UC 2006 – Preconference Seminar

Geo-Project Planning (Using ModelBuilder[™])

Ready, aim ...

William R. Miller and Eric Wittner Environmental Systems Research Institute

August 2006

Contents

Definitions Steinitz's Model of Landscape Change Modeling Spatial Information Mapping and Decision (MAD) Diagram Landscape Assessment Landscape Intervention **Benefits of going MAD**

Definitions

The definition of environment ...

Environment is the context for life.

physical systems biological systems social systems value systems

Definitions

The definition of landscape ...

Landscape is the planet's life-zone.

land + water below + surface + above physical + biological + social + values

Landscape Change Diagrams

Landscape Change Model (Concept Diagram)

Modeling Spatial Information (Process Diagram)

Mapping and Decision Diagram (MAD Diagram)

₽

Landscape Change Model by Carl Steinitz

Modeling Spatial Information

Mapping and Decision Diagram

Mapping and Decision Diagram

The Components of a MAD Diagram Semantic Structure Sensitivity Analysis Regression Analysis Benefit/Cost Analysis

MAD Diagram – Semantic Structure

MAD Diagram – Sensitivity Analysis - Data

₽

MAD Diagram – Sensitivity Analysis - Decisions

MAD Diagram – Regression Analysis - Data

MAD Diagram – Regression Analysis - Decisions

Examine which decisions contributes most to the final results

MAD Diagram – Benefit/Cost Analysis

Example - Mapping and Decision Diagram

Concept Diagram MAD Diagram ModelBuilder Diagram ModelBuilder Output

Concept Diagram

ILARIS Model – Assessing Landscape Quality

Intrinsic Landscape Aesthetic Resource Information System

MAD Diagram

MAD Diagram

₽

ModelBuilder Diagram

ModelBuilder Output

Landscape Significance - Entire Region

Landscape Assessment Model - Sequence

MAD Diagram – Issues of Concern

MAD Diagram – Spatial Data

MAD Diagram – Spatial Analysis

MAD Diagram – Issue Maps

MAD Diagram – Delphi Process

MAD Diagram – Evaluation Maps

Project Definition Issues of Concern Spatial Data Spatial Analysis Issue Maps Delphi Process Evaluation Maps

Project Definition

Focus (primary / secondary objectives)

Extent

(geographic boundaries / active domains)

Deliverables

(primary / secondary products)

Issues of Concern

Definition of issue ...

An *issue* is a concern that can be expressed as a scaled value.

Definition of Spatial Issue ...

A *spatial issue* is an issue that can be mapped as a scaled value.

Ē

Landscape Assessment

Types of Issues

Physical (terrain / earth / hydrology / climate)

Biological (flora / fauna)

Social (culture / demographics)

Economic (economic costs / benefits)

Listing Issues

Potential Issue	<u>Topic</u>	<u>Data</u>	<u>lssue</u>	Spatial	Importance
		15			
	1 Internet	175	UNCOUN .	SILLIN	
					- RACSAL
				<u>KUI</u>	
				HAN.	
		ST.			
	<u>5</u>) harmon	BinWee		
			U THE		

Classifying Spatial Issues

Ē

Landscape Assessment

Relating Issues

Ē

Landscape Assessment

Example: Power Plant Siting Issues (List of Spatial Issues)

Seismic Risk Foundation Stability Water Contamination Potential Water Availability Coastal Stability Ecological Sensitivity Social Sensitivity Public Hazards

Project Definition Spatial Issues Project Data

Spatial Data

Source Data (available – maybe) Project Data (useable) Derived Data (purposeful)

Ē

Landscape Assessment

Source Data vs. Project Data

Scale **Extent** Projection Classification Accuracy Resolution Completeness Age **Media/Format Ownership** Accessibility

Project Base Map

Map Extent Map Projection Coordinate Systems Scales Nesting System Geographic Features Cartographic Design Map Layout

Spatial Analysis

Functions (Interpretation / Comparison / Overlay)

Value Scales (Planning Values / Influence Ratios)

Interpretation

Ē

Planning Values (PVs) (Interval Scale)

Comparison

Weighted Overlay

Importance Ratios (IRs) or Weights (Ratio Scale)

IR	NIR	IR	NIR	PV	NIR
1.8	0.15	15%	0.15	2	0.08
2.0	0.16	25%	0.25	6	0.23
4.0	0.33	30%	0.30	9	0.35
3.5	0.28	20%	0.20	8	0.30
1.0	80.0	10%	0.10		0.04
12.3	1.00	100%	1.00	26	1.00
	IR 1.8 2.0 4.0 3.5 1.0 12.3	IRNIR1.80.152.00.164.00.333.50.281.00.08	IR NIR IR 1.8 0.15 15% 2.0 0.16 25% 4.0 0.33 30% 3.5 0.28 20% 1.0 0.08 10% 12.3 1.00 100%	IRNIRIRNIR1.80.1515%0.152.00.1625%0.254.00.3330%0.303.50.2820%0.201.00.0810%0.1012.31.00100%1.00	IR NIR IR NIR PV 1.8 0.15 15% 0.15 2 2.0 0.16 25% 0.25 6 4.0 0.33 30% 0.30 9 3.5 0.28 20% 0.20 8 1.0 0.08 10% 0.10 1 12.3 1.00 100% 1.00 26

* Example: Residential Suitability

Exercise 2

Mapping and Decision (MAD) Diagram

Group-Based Decisions Types of Groups The Delphi Process

Types of Groups Interdisciplinary Teams Interagency Committees Citizen Participation Groups

Delphi Process

Generic (standard OR technique)

> Planning (PVs and IRs)

Participants (team members / stakeholders / citizens)

Ē

Delphi Process - Generic

Ę

Delphi Process – PVs & IRs

Process

Delphi

Planning Values (PVs) are used to assess the suitability of the data categories on an Issue Map for a particular land use Importance Ratios (IRs) are used to specify the relative importance of each of the **Issue Maps when creating** a particular suitability map

Weighted Overlay

Ē

Delphi Process – PVs and IRs

Delphi Process – Participant's Input Form

Land Uses	Residential Suitability		Comme Suitab	ercial ility	Open Space Suitability		
Issues	yours	group	yours	group	yours	group	
Fnd Stability	13 %		32 %		0 %		
high	H+		H+		Bary		
medium	H +		M				
low	L		- L-	14-			
Eco Sensitivity	26 %		16 %		67 %		
high	L-	-\{h	R		H +		
medium	М	- 47 L			H +		
low	H +		H +		L-		

Delphi Process – Participant's Report

Land Uses	Residential Suitability		Commercial Suitability			Open Space Suitability			
Issues	yo	urs	group	yo	urs	group	yoı	Jrs	group
Fnd Stability	13 %		12 %	32 %		18 %	0 %		7 %
high	H +	9	8.7	H +	9	8.6	Bary)	A Martin	8.5
medium	H +	9	5.1	М	5	8.4			8.2
low	L	2	1.3	L-	1	2.3	4		8.7
Eco Sensitivity	26 %		29 %	16 %		35 %	67 %		41 %
high	L-	1	1.1	R	0	1.6	H+	9	8.8
medium	М	5	6.7	L	2	4.7	H +	9	5.3
low	H +	9	8.9	H +	9	8.8	L-	1	3.6
				The					

Delphi Process – Changing IRs (Example: Sensitivity to Siting a Nuclear Power Plant)

The Delphi Process (considerations) **Selecting the Participants Recording the Opinions Analyzing the Input Discussing Differences**

Exercise 3

Delphi Process

MAD Diagram – Evaluation Maps

Types of Evaluation Maps

Sensitivity (environmental)

Pressure (development)

Suitability (land use)

Capacity (activity)

> Risk (event)

Comparing Evaluation Maps

Environmental Sensitivity

Development Pressure

Sensitivity / Pressure

Landscape Intervention

Evaluation Maps

Alternative Plans

Impact Maps

Decision

Landscape Intervention

Urban Growth Alternate Land Use Plans Impact Assessments Decision Support

Landscape Intervention

Urban Growth

Demographic Projections (for various cohorts)

Socioeconomic Projections (for various sectors)

> Land Use Projections (for each type of land use)

Land Use Projections

Land Use	10 years	20 years	30 years	
Commercial	2,000	4,000	5,000	
Residential	500,000	900,000	1,200,000	
Eco Preserve	200,000	400,000	500,000	

Landscape Intervention

Alternate Land Use Plans

Land Use Assessment Maps (for each land use)

Morphological Analysis (the search for form)

Adjacency Considerations (near and far)

> **Concept Variations** (exploring possibilities)

Land Use Allocation

Commercial Suitability

Residential Suitability

Eco Preserve Suitability

Commercial Center

Residential Area

Eco Preserve

Morphological Analysis

E2 + C3

E3 + C1

Y

Y

Y

Y

Y

Ν

Ν

Ν

Ν

Ν

Adjacency Considerations

Land Use	Commercial	Residential	Eco Preserve		
Commercial		NEAR	FAR		
Residential	NEAR				
Eco Preserve	FAR				

Morphological + Adjacency

E2 + C3

E3 + C1

Y

Y

Y

Ν

Ν

Ν

Ν

Ν

Ę

Possible Variations

Basic Alternative Plans and their Variations

Alternative 1

Alternative 2

Alternative 3

Ē

Evaluate Alternatives

Alternative 1

Alternative 2

Alternative 3

Evaluation Criteria	IR	Alternative 1		Alternative 2		Alternative 3	
Ecological Values	0.40	9	3.6	7	2.8	5	2.0
Urban Values	0.10	9	0.9	6	0.6	9	0.9
Social Values	0.10	8	0.8	8	0.8	8	0.8
Aesthetic Values	0.15	8	1.2	9	1.4	5	0.8
Economic Values	0.25	9	2.2	5	1.2	2	0.5
Total	1.00		8.7		6.8		5.0

Final Land Use Plan

Final plan is the conclusion of a logical process All possible solutions considered Optimum solution(s) identified Provides a trace of the design process

Landscape Intervention

Impact Assessments

Assess Impacts (physical, biological, social and economic)

Evaluate Alternatives

(systematic assessment)

Assess Impacts

Landscape Intervention

Decision Support ... for staff, stakeholders and politicians

Policy Options (what if)

Land Use Scenarios (opportunities and benefits)

Impact Assessments (near and long term impacts)

Concluding Remarks

Ę

Landscape Change (MAD Diagram)

Benefits of going MAD

Framework for Integral Planning (Comprehensive / Holistic / Systems)

Facilitates Communication (Interagency / Interdisciplinary)

Delineates Project Workflow (Spatial Data / Spatial Analysis / Project Management)

Saves Time and Money (Project Tasks / Resource Allocation / Benefit-Costs)

Provides a Trace of the Decision Process (Clarity / Accountability / Quality)

Environmental Systems Research Institute

www.esri.com

William R. Miller 206-855-8428 bill miller@esri.com

Eric Wittner 909-793-2853 ewittner@esri.com